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On the fine structure of turbulent flows 
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(Received 18 June 1957) 

SUMMARY 
The turbulence produced by a multiplicity of small air jets 

has been investigated and comparisons are made with other 
turbulent flows. The eddy Reynolds number is large (R, = 250). 

The energy spectrum was measured, as well as the skewness 
and kurtosis of &/ax. The effect of the finite length of the hot 
wire is considered and the corrected results indicate that the 
spectrum follows the law of Kolmogoroff in an intermediate range 
and appears to  fall off with the (- 6)-power of the frequency in 
the viscous range. This range is limited at the upper end of the 
frequency range by electrical noise. Special precautions reduced 
this noise to the level of thermal agitation in the hot wire. 

The ultimate limit to spectral analysis is imposed by the 
molecular agitation of the gas. This limit is evaluated and 
compared with the spectrum of turbulence. It appears that the 
spectrum of a3u/8x3 merges with the spectrum of molecular 
agitation without a distinctive separation. 

1.  INTRODUCTION 
The fine structure of turbulent flows has been the object of numerous 

investigations but complete understanding has not yet been reached. In 
this paper, we describe certain recent results that may contribute to the 
clarification of the situation. 

The theory of turbulence becomes greatly simplified if one assumes 
incompressibility, homogeneity and isotropy of the velocity field. Under 
such conditions, one can define a one-dimensional spectrum F(k)  which 
is a function of a wave-number k. Let us define k, as the wave-number 
such that half the kinetic energy of the motion is contributed by the region 
k > k, and let us define k, as the wave-number such that half of the viscous 
energy dissipation occurs in the region k > k,. 

Two important theoretical predictions about F(k) are as follows 
(Batchelor 1953, ch. 6). According to Kolmogoroff, the spectrum should 
fall as k-5/3 in some subrange of wave-numbers in the range k, < k < k,, 
provided that k, 4 k,. According to Heisenberg, the spectrum should 
fall as k-' in the region k > k,. These two statements can be formulated 
in a single expression, and the theory shows that F(k) should cross a limit 
given by cv2k in the vicinity of k = k,, where c is a universal constant and Y 
the kinematic viscosity. Physically, this means that spectral components 
such that F < cv2k are strongly influenced by viscosity. 
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The theory of Heisenberg implies that the third derivative of the velocity 
does not exist, or, more exactly, that the mean-square of this quantity, 
given by the integral of K6F(K), does not converge. 

From Kolmogoroff's theory it can also be deduced that the parameter S 
(skewness of au/ax) should be a constant, provided K B  < K,,. 

The experimental studies of the fine structure of turbulence have been 
carried out in a single gas (air), virtually at a single temperature and pressure. 
The velocity fluctuations are sensed by hot-wire anemometers and the effect 
of the finite length of the wire is often disregarded. The hot-wire anemo- 
meter gives an electric signal proportional to the velocity fluctuation plus 
a certain amount of electronic noise, so that some kind of filter is desirable 
to reject unnecessary noise. 

In  general, the turbulent fluid passes by the hot-wire with a mean velocity 
U which is much larger than the velocity fluctuation and, with the hypothesis 
made by Taylor, the time derivative of the signal is taken as a fair approxi- 
mation to the space derivative. This allows the measurement of quantities 
such as: 

where ( ) denotes a time average, u is the velocity fluctuation in the 
direction of the x-axis and h is the dissipation length parameter. If kB < K,,, 
it can be shown that A3 = kEk2,, and the eddy Reynolds number 

becomes proportional to (K,,/kE)2/3. The verification of the theoretical laws 
thus requires a large value of RA, say RA 2 100. 

u' = (u2)112, h = U'((aU/dX)2)-1 '2 ,  

RA = u ' ~ / v  

Grid flows 
A large variety of investigations have been carried out in the turbulent 

wake of a plane grid obstructing a parallel flow. The requirements of 
homogeneity and isotropy are reasonably well satisfied here and for low 
velocities incompressibility is a reasonable approximation. RA usually 
varies from 20 to 100. In  practice, it becomes difficult to observe the fine 
details of the motion when Rn > 60. This is due to the fact that u'/ U < 0.02, 
resulting in a weak electric signal from the hot-wire. At some frequency oN 
the spectrum of the signal merges into the noise of the instruments, 
consequently the smallest observable details of the motion are comparable 
to the length ZN = u / 2 ? w N .  With a given grid size and a given hot-wire, 
RA increases as U1I2 whereas ZN increases at least as U. Therefore, as Rn 
increases, the resolution of the fine structure deteriorates. To  avoid this 
effect, one should use lower viscosities or larger wind tunnels. Because 
of these limitations, it was not possible either to really support or to disprove 
the theoretical spectral laws with the work on grid flow. 

It has been found that S varies very little and that quantities such as 
( ( a ~ / a x ) ~ )  and ((a2u/dx2)2> are related to each other in the way required 
by the Navier-Stokes equations. Measurements of the quantity ((83u/i39)2) 
have been reported by Batchelor & Townsend (1949), Townsend (1951), 
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and Stewart & Townsend (1951); Liepmann, Laufer & Liepmann (1951) 
carried out similar investigations of the third derivative but report more 
cautiously that " it appears to be finite ". 

Townsend (1951) proposed a simple model for the fine structure of 
turbulence based on stretching of vortex sheets or vortex lines. It leads to 
a spectrum falling as an exponential function of k2 when k is large. 
Measurements in grid flows in the range 15 < RA < 30 are in good agreement 
with the model, but discrepancies seem to appear as RA increases. 

Shear jlows 
The structure of turbulent shear flows has been studied by Laufer 

(1950, 1953), Klebanoff & Diehl(1951)) Corrsin & Uberoi (1951) and others. 
The departure from isotropy and homogeneity are serious but it affects 
principally the spectral components with wave-numbers near kE. In  a flow 
with RA = 300, Laufer (1950) found that the fine structure is nearly isotropic, 
that a portion of the spectrum falls as k5I3 and that the high frequency end 
of the spectrum falls as k-'. (He obtained this without applying a correction 
for the finite length effect of the hot-wire.) This last result implies that 
((a3u/i3x3)2) is infinite or at any rate that it is determined by values of k 
too large to be measured. 

In  an attempt to clarify this situation, we designed a simple device to 
produce turbulence with large RA and small I N .  The object of this paper 
is to describe the procedure and to comment on the results. 

2. EXPERIMENTAL INSTALLATION 

The ' Porcupine' 
A plywood box 60 x 60 x 120 cm has five perforated sides, as shown 

on figure 1. The sixth side is faired into a duct leading to a 20 h.p. blower. 

c--------, 

60 cm. 

Figure 1. The ' Porcupine '. The mixing of 80 small jets 
produces a strong turbulence in the region marked A, B, C. 

Each of the 80 openings is fitted with a round tube, 10 cm long and 2.5 cm 
inside diameter. In  operation the air enters the box through these tubes, 
forming 80 jets which merge into a turbulent flow exhausted into the duct 
by the blower. The Reynolds number based on velocity and diameter 
of a single jet is about 35000. The mean velocity of the flow in the 
parallel section is 450 cm/sec and the turbulence levels measured at the. 
points A, B,  C on the box axis are respectively 30%, 12% and 5%. 
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At point A, the turbulence is so strong that the hot-wire signal is not 
proportional to the velocity fluctuation, because of the intrinsic non-linearity 
of the instrument. At points B and C this distortion becomes less serious. 
The resolution length IN is larger at B than at C by about 60%. and, as a 
compromise between the distortion and the loss of resolution, the author 
decided to perform all measurements at point B. 

No systematic variations of U and u' over the plane normal to the mean 
flow were found, at distances up to 15 cm from the box axis. Both quantities 
varied by 5 to 15% between one run and another and it appears that the 
merging of the jets produces different flow patterns, as observed elsewhere 
by Corrsin (1944). 

Hot-wire and preamplt.ers 
Pt wires (diameter 1.25 microns, length 1 mm) heated up to twice the 

cold resistance were used. Whenever it became essential to minimize the 
electric perturbations (60 cycles ripple or contact noise) each wire was 
heated with a separate 22 volts battery and a fixed wire-wound series resistor ; 
all other metering devices were completely disconnected. s;41:i.;.7417A 

1 5 v  
WIRE 

22 " - 

- -L - - - - 

c---------,< > c  

HOT WIRE TRANSFORMER CIRCUIT PREAMPLIFIER 

Figure 2. Input circuit for low electrical noise. 

Two low noise preamplifiers were used, each with a Weston 417 A triode. 
'The noise of each preamplifier is equivalent to that of a 600 ohms resistor 
applied to the input. With the amplifiers in parallel, a single channel is 
formed with a noise of 300 ohms. For measurements in the high frequency 
range, lower noise figures were achieved with the transformer input circuit 
of figure 2. The relatively small coupling condenser renders the output 
proportional to the time derivative of the signal, up to 20 kc/s. Above this 
frequency, the wire resistance and other impedances become significant 
and the overall response deteriorates. With a transformer ratio of 10 to 1, 
the input noise at 15 kc/s becomes equivalent to the thermal noise of a 
50 ohms resistor at room temperature. 

With an unheated wire of 60 ohms the total equivalent noise-generating 
resistance is 110 ohms. With the same wire heated to 120 ohms, that is, 
to approximately 600" K, we can expect a noise of about 300 ohms. This 
means that the amplitude of the noise should increase by about 260%, when 
the heating current is turned on. (This increase is noticeable on figure 5, 
at K > 300, in the range where the electronic noise dominates the turbulent 
.signal.) 
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We verified that the battery did not make an additional contribution 
to the noise. For this purpose we replaced the hot-wire with a 200 ohms 
wire-wound resistor, and observed that the passage of the heating current 
did not affect the noise of the wire-wound resistor. 

Thermal lag compensation 
T h e  thermal inertia of the hot-wire appreciably attenuates the signal 

above 600 c/s. With the transformer input of figure 2, the coupling condenser 
provides the desired compensation from 600 cis to 20 kcis. It would be 
inadvisable to modify this circuit and obtain a constant gain between 3 and 
600 c/s. Indeed, the low frequency components of the signal would be 
so large that they would saturate the preamplifier. 

With a capacitive coupling into the preamplifier, i t  was necessary to 
limit the response of the preamplifier to  the range of 2 0 0 4 s  to  20 kc/s, 
in order to avoid this saturation by low frequency components. When the 
transformer was not in use, the thermal compensation was provided by an 
operational amplifier with an appropriate feed-back loop. However, the 
presence of a large turbulent signal made it difficult to adjust the time 
constant of the circuit by the usual square wave method. 

For measurements of u’ or of the low frequency portion of the spectrum, 
the preamplifier was by-passed completely. 

Dtjfeerentiation and Jiltering 
An operational amplifier was used in the manner of analogue computing. 

The  response of each differentiating unit increased with w up to 20 kc/s 
and decreased with w-l from 40 kc/s upward. This provided the appropriate 
filtering of the high frequency components of the electronic noise. 

Wave analysers 
Between 3 and 7500 CIS a General Radio wave analyser with a band-width 

proportional to the tuned frequency was used, and, from 100 c/s to 15 kc/s, 
a Hewlett Packard analyser built around a modulator and four amplifiers 
tuned for 20 kc/s. I n  order to avoid the formation of modulation images, 
it was necessary to insert ahead of this wave analyser a low-pass filter with 
cut-off at 15 kc/s. From 7 kc/s to 60 kc/s a Sierra analyser with constant 
band-width was used. 

T h e  output of each analyser was squared, averaged, and reduced to 
a constant band-width, and the responses were matched at 100 CIS and 
10 kc/s. Good agreement was found in the two regions where analysers 
overlap. 

When the spectrum of the signal falls very rapidly, an analyser may be 
unable to separate the components properly. Indeed a tuned amplifier 
driven with a frequency lower than the resonance frequency has a gain 
proportional to the frequency. With four tuned amplifiers and a signal 
whose spectrum falls as w - ~ ,  the output of the analyser is seriously in error. 
This  difficulty can be avoided if the signal is differentiated once or twice 

FPM.3, 0 
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before reaching the analyser, since each differentiation multiplies the 
spectrum by d. 

3. THE ENERGY SPECTRUM (WITHOUT CORRECTION FOR WIRE 

LENGTH) 

With a wave analyser tuned on frequency w the corresponding wave- 
number is k = 27rw/U and the one-dimensional spectrum F(k)  is equal to 
the mean-square of the analyser output multiplied by a constant such that 

m 

(242) = I F(k)dk .  
0 

In  figure 3 we show F(k)  as a function of k, with linear scales. A check with 
a variable low-pass filter indicated that half of the mean-square of u is 
contributed by components below k = 0.1 cm-l and this confirms the 
existence of a maximum of F. It also suggests an energy scale of the order 
of 10 cm, which is comparable with the size of the box. A check with 
two crossed wires indicated that u'/v' = 1.3, where v' refers to a velocity 
component normal to the mean flow. This represents an appreciable 
deviation from isotropy. 

c m 3  s e i ' l  O' "\ I I I I 

n l  I I 
- 0  01 0.2 0.3 

k crn:' 

Figure 3. Energy spectrum vs wave-number with linear scales. 

In  figure 4 we show the spectrum with logarithmic scales. It follows 
the law of Kolmogoroff in the range 0.15 < k < 15. In the range 
70 < k < 200 it appears to follow the law of Heisenberg. For k > 200 
the curve rises, but this is due to the electronic noise. These results have 
yet to be corrected for wire length effect; this will be done in the next 
section. 

As previously discussed, it was suspected that the power law with 
which the spectrum falls off could be affected by the analyser itself. As 
a controlling experiment we measured the spectrum of a2u/at2, which 
is proportional to k4F. The results (see figure 5) show a corresponding 
portion of the curve falling as k3, in agreement with the measurements 
of F(k)  (for a wire of finite length). 

Figure 5 shows the spectrum of the noise, measured with a cold wire. 
At high frequencies it remains slightly below the signal obtained with the 
heated wire, as expected. 
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Estimated thermal noise 

1 6 e e  

k cm.-' 

Figure 4. Energy spectrum ZIS wave-number with logarithmic scales. 

o measured with heated wire 
x measured with cold wire 

I 0 ' l  I oo loo lo' 

Figure 5 .  The spectrum of azu/a.z (not corrected for wire-length effect). 

0 2  
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In  figure 6, the spectrum of figure 4 is compared with other results 
obtained in grid flows, in shear flows or in atmospheric turbulence. (It was 
necessary to convert the data published by several authors to the scales 
used here; this could not be done for the curves 7 and 8 and they have 
been given arbitrary translations.) 

/ 
,/- -!-. &?- k 2  

6 4 a 2  p 
I 

a Atmospheric turbulence , Crane - Chilton 

@ Multiple jets , Betchov 

8 Boundary layer , Klebanoff 

a Channel flow , Laufer 

Figure 6. Comparison of several spectra. 

We indicate by a dotted line the limit cv2k with the arbitrary choice 
E = 5. Below this line, the spectrum is controlled by viscosity (see Q 1). 

The grid flows nos. 1 and 2 (Liepmann, Laufer & Liepmann 1951; 
Klebanoff & Diehl 1951) appear to have energy scales too small for a 
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well-developed range of Kolmogoroff‘s law. The shear flows nos. 5, 6, 7 
(Laufer 1950,1953 ; Klebanoff & Diehll951) and the author’s turbulent flow 
no. 4 have such ranges. The curves 4,5 and 6 seem to come together near 
k = 20 cm-l. As for atmospheric turbulence, no. 3 (Crane & Chilton 
1956), the measurements have not been extended to the fine scale. 
(A pioneering contribution by Godecke (1935) in the range 0.1 < k < 10 
unfortunately does not yield the spectrum.) It would be interesting and 
not too difficult to study the fine structure of atmospheric turbulence; 
it might reveal a viscous cut-off somewhere beyond k = 10. 

Beyond the viscous limit, all the spectra fall rapidly enough to ensure 
the existence of ( ( i3u /a~)~)  and ((i32u/i3x2)2). As for ((i33u/i3x3)2), it appears 
to depend upon spectral components beyond the range of present 
measurements. 

4. CORRECTION FOR WIRE LENGTH 

The finite length of the hot-wire introduces a particular type of error 
in the measurement of spectra. A complete theory of this effect has been 
given by KovPsznay & Uberoi (1953), with the assumption that all portions 
of the wire are equally sensitive. In the case of the present investigation, 
the ‘ cold ends ’ are about 0.05 mm wide each and the wire length is 1 mm, 
and, according to Betchov (1948), this means that a correction for finite 
length is necessary for k > 20. 

In  figure 4 a dotted line shows the approximate values of the corrected 
spectrum. Furthermore, the theory of the wire-length effect shows that, 
if the measured spectrum falls as k-’, the true spectrum should fall as k6. 
Since this correction has not been applied to the results of figure 5, the 
apparent seventh power law must be interpreted as evidence that the true 
spectrum falls off as kS. This means that the law proposed by Heisenberg 
has no support from these experiments, and that the results of figure 5 
suggest that the spectrum of the third derivative becomes flat for k 2 70. 
There is little doubt that the correction for wire length applies also to 
Laufer’s measurements (curve no. 7, figure 6). 

As a subsidiary verification of the theory for wire-length effect, measure- 
ments F(k) were made with two wires 1 and 6 mm long. The wave analyser 
was set on a particular frequency, and the two values of F were measured 
by simply switching from one wire to  the other ; this method minimizes 
the errors introduced by slow changes in the flow or the wire sensitivities. 
The same compensating network was used for both wires, since it was not 
possible to obtain an accurate adjustment of the compensating network 
in the presence of the large turbulence. The preamplifiers were operated 
with capacitive coupling (noise of 300 ohms), and therefore the measure- 
ments could not be extended beyond 15 kc/s. Figure 7 shows the measured 
values of q, where 



214 R. Betchov 

The theory of the wire-length effect predicts that 9 should start from 6 
at low frequencies and begin to drop at w = 250 CIS, finally levelling off to 
46 at high frequencies. The measurements support the theory. 

frequency cps 

Figure 7. Effect of wire length on the measurement of a spectrum. 

5 .  SKEWNESS AND KURTOSIS OF au/ax 
Measurements of the mean-square of the square, cube and fourth 

powers of &/ax were made, using three chains of 10 double triodes, properly 
biased. Two chains were used for squaring and one for cubing, and the 
frequency responses were satisfactory. The largest errors were due to 
deviations from exact power law responses. 

It was found that S = - 0.45 & 0.05 and y = 4.5 & 0.5 ; these results 
are not different from those obtained in grid flows with 30 < RI < 60 
or in shear flows (Betchov 1956). 

The largest contribution to S originated from pulses of au/& lasting 
approximately 0.5 millisecond. This corresponds to a length of about 
2 mm and a correction for wire length may be necessary. 

For the dissipation length parameter, the result was X = 0.7 cm which 
corresponds to a wave-number 1.5 cm-l and to RA = 250. This result 
illustrates the fact that, at large values of RA, the length h is intermediate 
between the energy scale Kgl (about 10 cm) and the scale of dissipation KL1 
(about 0.025 cm). As is now generally appreciated, the name ' microscale ' 
which is sometimes given to h is not appropriate. 

6. MOLECULAR AGITATION IN A PERFECT GAS 

In  these experiments, the spectrum could not be measured beyond the 
frequency at which the noise of the hot-wire becomes dominant. It can 
be shown theoretically that a hollow wire having the same outside diameter 
as the wire used here and heated to  the same temperature would give a 
better signal-to-noise ratio. Thus, by removing metal from within the 
wire, one could in theory extend the measurements of F(K), with no obvious 
limit until the atomic structure of the wire becomes significant. 
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This raises the question of other forms of noise and in particular of the 
noise produced by the gas itself. Somewhere, the spectrum of turbulence 
must merge with the spectrum of molecular agitation, and we shall now 
attempt to locate this point. 

Let us consider a volume of gas of linear dimension L containing n 
molecules. The molecular velocities are of the order of (k’T/m)1’2, where 
k’ is Boltzmann’s constant, T the absolute temperature and m the mass of 
a molecule. The velocity of the gas can be defined as that of the centre-of- 
mass of the n molecules and it will fluctuate with a mean-square velocity 
of the order of k‘Tlmn. Consider now two such elements of volume, with 
centres distance D apart. The correlation between the velocities of the 
two centres of mass will vary from 1 if D = 0 to zero if D > 2 L .  From the 
correlation we can compute the three-dimensional spectrum for kL < 1 ; 
in this way we find 

Enoise = (3K’ T/4n”p)P, 

where p = nm/L3 is the gas density. This spectrum increases with k2 and 
should reach a maximum near kL = 1. For the present purpose, we 
can assume that L is small (say L = 1 micron, or 50 mean-free-paths in 
air). 

If the one-dimensional spectrum of turbulence F falls as k6, the three 
dimensional spectrum (Batchelor 1953) is given by Eturb. = 48F. The 
spectrum of turbulence can therefore be expected to cross that of molecular 
agitation (so that Eturb, = Enoise) at the wave-number where 

F(k)  = (k’T/64r2p)k2. (1) 
This expression should be regarded as a crude estimate. It is based on a 

simplified picture of molecular agitation which does not include fluctuations 
of pressure, density or temperature. It is also based on the application of 
the Taylor hypothesis to the finest components of the turbulence. This 
certainly ceases to be valid of k > U h ,  since such eddies are dissipated before 
they are displaced by the mean flow. In the present case this occurs at 
k > 3000 cm-l. 

The expression on the right-hand side of (1) is shown as dotted lines 
on figures 4 and 6 and it suggests that, unless F(k)  has an abrupt cut-off, the 
spectrum of turbulence disappears in mdecular noise with a logarithmic 
slope of -6. This would leave quantities such as ((a3u/ax3)2) without 
significance in the sense of fluid mechanics. Stating it a different way, it 
appears that the gap between turbulence and molecular agitation may not 
be as wide as is generally assumed. 

This work was jointly sponsored by the Navy Bureau of Ordnance 
under contract Nord 15872, and Project SQUID, which is jointly supported 
by the Office of Naval Research, the Office of Scientific Research (Air 
Force), and the Office of Ordnance Research (Army) under contract 
N6ori-105 T O  111. 
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